• In terms of potential energy, where:

$$E = \int F dr$$
  

$$E_N = \int_{\infty}^{r} F_N dr$$
  

$$= \int_{\infty}^{r} F_A dr + \int_{\infty}^{r} F_R dr$$
  

$$= E_A + E_R$$

1



- Looking at the graph, r<sub>0</sub> corresponds to the minimum of the potential energy curve.
- The bonding energy for these two atoms, E<sub>0</sub>, corresponds to the energy at this minimum point; it represents the energy that would be required to separate these two atoms to an infinite separation.
- This is an ideal situation between two atoms, in reality the condition is more complex with more than two atoms interacting with each other.
- Bonding energy and the shape of the energy curve is different from material to material.
- Material properties depends on  $E_0$  e.g. melting temperature



## Categories of material bonds

Primary bonds:

1. Ionic bond

2. Covalent bond

3. Metallic bond

Secondary bonds, between:

- 1. Induced dipoles
- 2. Induced dipoles and polar molecules
- 3. Polar molecules (permanent bonds)
  - Hydrogen bonding

## Ionic bonding

- Compounds composed of metallic and non metallic elements.
- Metallic atoms gives up valence electrons to non-metallic atoms.
- All atoms acquire stable electron configuration and an electric charge they become ions.
- The attractive bonding force between positive and negative atoms are called coulombic force.
- For two isolated atoms, the attractive energy is given by the following equations respectively:

$$E_A = -\frac{A}{r}$$
  $E_R = \frac{B}{r^n}$ 

The value of *n* is approximately 8

Ionic bonding (cont.)

- Bonding energies generally range from 600 and 1500 kJ/mol (3 and 8 eV/atom) are relatively large, as reflected in high melting temperatures.
- Ionic material are hard and brittle and, they are good electrically and thermally insulation.
- Ceramics are mostly ionic.
- Magnitude of the bond is equal in all directions they are non-directional.

 $^{\rm 3}$  The constant A in Equation 2.8 is equal to

$$\frac{1}{4\pi\epsilon_0} \left( Z_1 e \right) \left( Z_2 e \right)$$

where  $\epsilon_0$  is the permittivity of a vacuum (8.85 × 10<sup>-12</sup> F/m),  $Z_1$  and  $Z_2$  are the valences of the two ion types, and *e* is the electronic charge (1.602 × 10<sup>-19</sup> C).



Schematic representation of ionic bonding in sodium chloride (NaCl)

Covalent bonding

- Stable electron configurations are assumed by the sharing of electrons between adjacent atoms.
- Covalent bonds are directional according to the atom it is sharing with.
- The number of covalent bonds possible for an atom depends on the number of valence electron N' i.e. an atom can covalently bond with at most 8 N' other atoms.
- Covalent bonds can be very strong as in diamond which is very hard and has a high melting point > 3550°C or it can be very week.
- Polymeric materials are covalent bonded.
- Most compounds are partially ionic and partially covalent
- The wider their separation (the greater the difference in electronegativity) in the periodic table the more ionic the bonds.



Metallic bonding

- Metallic bonding is primarily found in metals and their alloys.
- Metallic atoms have at most 3 valence electrons and these electrons are free to drift throughout the entire metal.
- The valence electron belongs to the metal as a whole forming a "sea of electrons".
- The remaining non valence electrons and the atomic nuclei form ion cores, which are positively charged.
- The sea of electrons act as glue to hold the ion cores together and shield the positively charged ion cores from mutually repulsive electrostatic forces.
- Metallic bonds may be strong or weak with energies ranging from 68 kJ/mole (0.7 eV/atom) to 850 kJ/mole (8.8 eV/atom)

Metallic bonding cont...

- Metals are good conductors of electricity and heat (as a consequence of their free electrons).
- Metals are ductile as compared to ionic materials which are brittle.



Schematic illustration of metallic bonding

Sea of valence electrons

Secondary or van der Waals bonding

- Secondary bonds are weaker bonds compared to permanent bonds.
- They exist between all atoms or molecules.
- Evidence of secondary bonds are bonds between inert gases and molecules of covalent bonds.
- It has very small bonding energy however, permanent dipoles have greater energies than induced dipoles.
- Secondary bonding attraction depends on uneven distribution of positive and negative charge – referred to as dipole.



Atomic or molecular dipoles

**FIGURE 2.12** Schematic illustration of van der Waals bonding between two dipoles.

Secondary bonds cont...

- Secondary bonds exist between
  - Fluctuating induced dipole bonds
  - Induced dipoles and polar molecules
  - Polar molecules (permanent bonds)
  - Hydrogen bonding

Fluctuating induced dipole bonds

• A dipole may be created or induced in an atom or molecule that is normally electrically symmetric.



**FIGURE 2.13** Schematic representations of (*a*) an electrically symmetric atom and (*b*) an induced atomic dipole.

(a)

• All atoms experience constant vibrational motion that can cause a short-lived distortion of this electrical symmetry for some atoms or molecules. Hence a small electric dipole is



**FIGURE 2.13** Schematic representations of (*a*) an electrically symmetric atom and (*b*) an induced atomic dipole.

- The induced dipole above will turn a neighbouring atom or molecule into a dipole. Causing them to attract one another and bond.
- These attractive forces exist between large amounts of atoms and molecules and these forces are temporary and fluctuate with time.
- These bonds are weak hence materials where these bonds are predominant have low melting and boiling points.

Polar molecule – Induced Dipole Bonds

• Permanent dipoles or polar molecules exist in some molecules due to its inter-molecular arrangement.



FIGURE 2.14 Schematic representation of a polar hydrogen chloride (HCl) molecule.

- Polar molecules can also induce adjacent non-polar molecules and bond.
- The magnitude of these bonds are great than for fluctuating induced dipoles.

## Permanent dipole bonds

- Van der Waals force can also exist between adjacent polar molecules.
- Hydrogen bond is a special case of permanent dipole bonds
  - It occurs between molecules in which hydrogen in covalently bonded to fluorine (HF), oxygen (H<sub>2</sub>O), and nitrogen (NH<sub>3</sub>)
  - The magnitude of a hydrogen bond is greater than other secondary bonds.



**FIGURE 2.15** Schematic representation of hydrogen bonding in hydrogen fluoride (HF).

| Bonding Type  | Substance        | Bonding Energy |                           | Melting             |
|---------------|------------------|----------------|---------------------------|---------------------|
|               |                  | kJ/mol         | eV/Atom,<br>Ion, Molecule | Temperature<br>(°C) |
| Ionic         | NaCl             | 640            | 3.3                       | 801                 |
|               | MgO              | 1,000          | 5.2                       | 2,800               |
| Covalent      | Si               | 450            | 4.7                       | 1,410               |
|               | C (diamond)      | 713            | 7.4                       | > 3,550             |
|               | Hg               | 68             | 0.7                       | -39                 |
| Metallic      | Al               | 324            | 3.4                       | 660                 |
|               | Fe               | 406            | 4.2                       | 1,538               |
|               | W                | 849            | 8.8                       | 3,410               |
| van der Waals | Ar               | 7.7            | 0.08                      | -189                |
|               | $Cl_2$           | 31             | 0.32                      | -101                |
| Hydrogen      | NH <sub>3</sub>  | 35             | 0.36                      | -78                 |
|               | H <sub>2</sub> 0 | 51             | 51                        | 0 19                |

## Bonding Energies and Melting Temperature for Various Substances

