ME1205 MATERIALS SCIENCE TUTORIAL 1

- 1. Calculate the number of atoms contained in a cylinder $1\mu m$ in diameter by $1\mu m$ deep of (a) magnesium and (b) lead.
- One mole of solid MgO occupies a cube 22.37 mm on a side. Calculate the density of MgO (in g/cm³). Calculate the mass of an MgO refractory brick with dimensions: 50 mm x 100 mm x 200 mm.
- 3. Calculate the dimensions of (a) cube containing 1 mol of copper and (b) a cube containing 1 mol of lead.
- **2.6** Allowed values for the quantum numbers of electrons are as follows:

 $n = 1, 2, 3, \dots$ $l = 0, 1, 2, 3, \dots, n-1$ $m_l = 0, \pm 1, \pm 2, \pm 3, \dots, \pm l$ $m_s = \pm \frac{1}{2}$

The relationships between *n* and the shell designations are noted in Table 2.1. Relative to the subshells,

l = 0 corresponds to an *s* subshell

l = 1 corresponds to a p subshell

I = 2 corresponds to a *d* subshell

I = 3 corresponds to an *f* subshell

- 2.7 Give the electron configurations for the following ions: Fe²⁺, Fe³⁺, Cu⁺, Ba²⁺, Br⁻, and S²⁻.
- **2.8** Cesium bromide (CsBr) exhibits predominantly ionic bonding. The Cs⁺ and Br⁻ ions have electron structures that are identical to which two inert gases?
- **2.9** With regard to electron configuration, what do all the elements in Group VIIA of the periodic table have in common?
- **2.10** Without consulting Figure 2.6 or Table 2.2, determine whether each of the electron configurations given below is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your choices.
 - (a) $1s^22s^22p^63s^23p^63d^74s^2$.
 - (b) $1s^22s^22p^63s^23p^6$.
 - (c) $1s^2 2s^2 2p^5$.
 - (d) $1s^2 2s^2 2p^6 3s^2$.
 - (e) $1s^22s^22p^63s^23p^63d^24s^2$.
 - (f) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$.

For the *K* shell, the four quantum numbers for each of the two electrons in the 1*s* state, in the order of nlm_lm_s , are $100(\frac{1}{2})$ and $100(-\frac{1}{2})$.

Write the four quantum numbers for all of the electrons in the L and Mshells, and note which correspond to the s, p, and d subshells.

2.13 The net potential energy between two adjacent ions, E_N , may be represented by the sum of Equations 2.8 and 2.9, that is,

$$E_N = -\frac{A}{r} + \frac{B}{r^n}$$

Calculate the bonding energy E_0 in terms of the parameters A, B, and n using the following procedure:

1. Differentiate E_N with respect to r, and then set the resulting expression equal to zero, since the curve of E_N versus r is a minimum at E_0 .

2. Solve for *r* in terms of *A*, *B*, and *n*, which yields r_0 , the equilibrium interionic spacing.

3. Determine the expression for E_0 by substitution of r_0 into Equation 2.11.

2.17 (a) Briefly cite the main differences between ionic, covalent, and metallic bonding.

(b) State the Pauli exclusion principle.