
HEAT TRANSFER

CONDUCTION

The Conduction Rate Equation

– Developed from observed phenomena rather than from first principles.

– Consider a cylindrical rod of know material and it is insulated on its lateral 
surface, while its ends are maintained at different temperatures.

– The temperature difference causes conduction heat transfer in the positive x 
direction.  

Figure 1: Cylindrical rod

– We are able to measure the heat transfer rate, qx, and seek to determine how 
qx depends on the following variables:

• The temperature difference, ΔT
• The length of the rod, Δx
• The cross-sectional area, A

– By holding ΔT and Δx constant we find A is proportional to qx.

– By holding ΔT and A constant we find Δx is inversely proportional to qx.

– By holding A and Δx constant we find ΔT is proportional to qx.

– Hence collectively:

– The above proportionality is still valid for different materials (i.e. metal to 
plastic).  However, for same values of ΔT, Δx and A, the value of qx is smaller 
for plastic than for metal.

– Therefore the proportionality may be converted to an equality by introducing 
a coefficient that is a measure of the material behavior.  Hence:

where k is the thermal conductivity (W/m•K).
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– Evaluating the expression in the limit as Δx approaches 0, we obtain for heat 
rate:

– The heat flux is then:

Thermal Conductivity

– The thermal conductivity associated with Fourier’s law in the x direction is 
defined as:

It is similar for thermal conductivities in the y and z directions (ky and kz).

– However,  for isotropic material the thermal conductivity is independent of 
the direction  i.e. kx = ky = kz

– In general,

Figure 2: 
Range of 
thermal 
conductivity 
for various 
states of 
matter at 
normal 
temperatures 
and pressures

dx

dT
kAqx  ( )W

dx

dT
k

A

q
q x

x '' 2( )W m

)(

''

xT

q
k x

x 
  KmW 

gasliquidsolid kkk 



Heat Diffusion Equation

– Also known as heat equation.

– This is the basic equation that governs the transfer of heat in a solid.

– Basic tool for determining the temperature distribution of a system i.e. T (x, y, 
z)

– Consider the system shown in the figure below undergoing transient heat 
conduction with energy generation within the system.  

– For the element thickness dx, the energy balance is as such:

Energy conducted in left face + Heat generated within the element - Energy 
conducted out right face = Change in internal energy

Or
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Energy conducted in left face = 

Heat generated within the element  

Energy conducted out right face =

Energy conducted out right face

Where: = energy generated per unit volume, W/m3

= specific heat capacity of material, J/kg.ºC

= density, kg/m3

Hence:
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Heat equation (three dimensional conduction):

One dimensional heat equation:

Simplification of the heat equation:

1. Steady-state condition:

2. Steady-state, one dimensional heat transfer with no energy generation:
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Radial coordinates heat equation:

One dimensional radial heat equation:

Simplification of the radial heat equation:

1. Steady-state condition:

2. Steady-state, one dimensional heat transfer with no energy generation:
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Spherical coordinates heat equation:

One dimensional spherical heat equation:

Simplification of the spherical heat equation:

1. Steady-state condition:

2. Steady-state, one dimensional heat transfer with no energy generation:
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Boundary and Initial Conditions

– To determine the temperature distribution, we have to solve the appropriate 
form of the heat equation.

– To this we must specify the boundary conditions (the physical conditions 
existing at the boundaries) and the initial condition of the medium if it is time 
dependent.

– Since the heat equation is second order in the spatial coordinate, two 
boundary conditions must be specified and since it is first order in time only 
one initial condition required.

– The three kinds of boundary conditions are…

1. Constant surface temperature:

                  

2. Constant surface heat flux:

     (a) Finite heat flux:

                  

     (b) Adiabatic or insulated surface:

3. Convection surface condition:
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