HEAT TRANSFER FREE CONVECTION – EXTERNAL FLOW

Laminar and turbulent free convection

- > Like forced convection, free convection can start off as laminar and then become turbulent
- \blacktriangleright The transition is marked by a critical Rayleigh number Ra_{x,c} that depends on geometry • e.g. $Ra_{x,c} \approx 10^9$ for vertical plates

In free convection heat transfer, the empirical correlations are generally of the form:

$$\overline{Nu_L} = \frac{\overline{hL}}{k} = CRa_L^n$$

Where the Rayleigh number,

$$Ra_L = Gr_L \operatorname{Pr} = \frac{g\beta(T_s - T_{\infty})L^3}{\upsilon\alpha}$$

Vertical, Inclined and Horizontal Plates: **Churchill and Chu correlation (Equation 9.26):**

$$\overline{Nu_L} = \frac{\overline{h}L}{k} = \left\{ 0.825 + \frac{0.387Ra_L^{1/6}}{\left[1 + \left(0.492/\Pr \right)^{9/16} \right]^{8/27}} \right\}^2$$

Horizontal plates: Hot Surface Up or Cold Surface Down:

$\overline{Nu_L} = 0.54 Ra_L^{1/4}$	$10^4 \le Ra_L \le 10^7$	(Equations 9.30)
$\overline{Nu_L} = 0.15 Ra_L^{1/3}$	$10^7 \leq Ra_L \leq 10^{11}$	(Equations 9.31)

Cold Surface Up or Hot Surface Down:

 $\overline{Nu_L} = 0.27 Ra_L^{1/4} \quad 10^5 \le Ra_L \le 10^{10}$ (Equations 9.32)

The characteristic length for horizontal surfaces is calculated from $L_c = A_s/P$ where A_s is the surface area and P is the perimeter.

\mathbf{O}		
Geometry	Recommended Correlation	Restrictions
1. Vertical plates ^a		
2. Inclined plates Cold surface up or hot surface down	Equation 9.26	None
3. Horizontal plates (a) Hot surface up or cold surface down	Equation 9.26 $g \longrightarrow g \cos \theta$	$0 \le \theta \lesssim 60^{\circ}$
(b) Cold surface up or	Equation 9.30 Equation 9.31	$10^4 \lesssim Ra_L \lesssim 10^7$ $10^7 \lesssim Ra_L \lesssim 10^{11}$
indi surface down	Equation 9.32	$10^5 \leq Ra_L \leq 10^{10}$

TABLE 9.2 Summary of free convection empirical correlations for immersed geometries

Long Horizontal Cylinder:

$$\overline{Nu_D} = \frac{\overline{h}L}{k} = \left\{ 0.60 + \frac{0.387Ra_D^{1/6}}{\left[1 + (0.559/\Pr)^{9/16} \right]^{8/27}} \right\}^2 \text{(Equations 9.34)}$$

Spheres:

$$\overline{Nu_D} = \frac{\overline{h}L}{k} = \left\{ 2 + \frac{0.589Ra_D^{1/4}}{\left[1 + (0.469/\Pr)^{9/16}\right]^{4/9}} \right\}^2 \text{(Equations 9.35)}$$

4. Horizontal cylinder

5.	Sphere	Equation 9.34	$Ra_D \lesssim 10^{12}$
2		Equation 9.35	$Ra_D \lesssim 10^{11}$ $Pr \gtrsim 0.7$