HEAT TRANSFER

ANALYSIS OF HEAT EXCHANGER

The Effectiveness – NTU Method

This method is based on a dimensionless parameter called the heat transfer effectiveness, ε . Where

$$\varepsilon = \frac{q}{q_{\max}} = \frac{actual \ heat \ transfer \ rate}{\max \ imum \ possible \ heat \ transfer \ rate}$$

The actual heat transfer rate can be determined from

$$q = C_c (T_{c,out} - T_{c,in})$$
$$q = C_h (T_{h,in} - T_{h,out})$$

Where

$$C_h = \dot{m}_h C_{ph}$$
$$C_c = \dot{m}_c C_{pc}$$

The maximum possible heat transfer rate is given by

$$q_{\max} = C_{\min} \left(T_{h,in} - T_{c,in} \right)$$

Where C_{min} is the smaller of C_h and C_c and $\Delta T_{max} = T_{h,in} - T_{c,in}$

The determination of q_{max} requires the availability of the **inlet temperature** of the hot and cold fluids and their **mass flow rates**, which are usually specified. Then, once the effectiveness of the heat exchanger is known, the actual heat transfer rate q can be determined from

$$q = \varepsilon q_{\max}$$
$$q = \varepsilon C_{\min} \left(T_{h,in} - T_{c,in} \right)$$

To determine the effectiveness, ε we involve a dimensionless quantity called **number of transfer units** which is expressed as

$$NTU = \frac{UA}{C_{\min}}$$

Take note how, the larger the NTU, the larger the heat exchanger.

Another dimensionless quantity used is the **capacity ratio**, c which is expressed as

$$c = \frac{C_{\min}}{C_{\max}}$$

Hence, the effectiveness of a heat exchanger which depends on the **geometry** of the heat exchanger as well as the **flow arrangement** can be determined from the expressions given in the table below.

TABLE 13-4							
Effectiveness relations for heat exchangers: NTU = UA_s/C_{min} and $c = C_{min}/C_{max} = (\dot{m}C_p)_{min}/(\dot{m}C_p)_{max}$ (Kays and London, Ref. 5.)							
Heat exchanger type		Effectiveness relation					
1	<i>Double pipe:</i> Parallel-flow	$\varepsilon = \frac{1 - \exp\left[-\operatorname{NTU}(1 + c)\right]}{1 + c}$					
	Counter-flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1 - c)\right]}{1 - c \exp\left[-NTU(1 - c)\right]}$					
2	<i>Shell and tube:</i> One-shell pass 2, 4, tube passes	$\varepsilon = 2 \left\{ 1 + c + \sqrt{1 + c^2} \frac{1 + \exp\left[-NTU\sqrt{1 + c^2}\right]}{1 - \exp\left[-NTU\sqrt{1 + c^2}\right]} \right\}^{-1}$					
3	Cross-flow (single-pass)						
	Both fluids unmixed	$\varepsilon = 1 - \exp\left\{\frac{NTU^{0.22}}{c} [\exp(-c \ NTU^{0.78}) - 1]\right\}$					
	C _{max} mixed, C _{min} unmixed	$\varepsilon = \frac{1}{c} (1 - \exp \{1 - c[1 - \exp (-NTU)]\})$					
4	C _{min} mixed, C _{max} unmixed All heat	$\varepsilon = 1 - \exp\left\{-\frac{1}{c}[1 - \exp\left(-c \operatorname{NTU}\right)]\right\}$					
	with $c = 0$	c = T = evh(-1010)					

The effectiveness, ε can also be determined graphically from Figure 13-26.

Subsequently, if we know ε , we can determine the NTU number from the expressions in the table below.

TA	BL	Ε	13	3–5

NTU relations for heat exchangers NTU = UA_s/C_{min} and $c = C_{min}/C_{max} = (\dot{m}C_p)_{min}/(\dot{m}C_p)_{max}$ (Kays and London, Ref. 5.)

Heat exchanger type		NTU relation		
1	<i>Double-pipe:</i> Parallel-flow	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + c)\right]}{1 + c}$		
	Counter-flow	$NTU = \frac{1}{c-1} \ln \left(\frac{\varepsilon - 1}{\varepsilon c - 1} \right)$		
2	<i>Shell and tube:</i> One-shell pass 2, 4, tube passes	NTU = $-\frac{1}{\sqrt{1+c^2}} \ln \left(\frac{2/\epsilon - 1 - c - \sqrt{1+c^2}}{2/\epsilon - 1 - c + \sqrt{1+c^2}} \right)$		
3	<i>Cross-flow</i> (<i>single-pass</i>) <i>C</i> _{max} mixed, <i>C</i> _{min} unmixed	$NTU = -In\left[1 + \frac{In\left(1 - \varepsilon c\right)}{c}\right]$		
4	C_{min} mixed, C_{max} unmixed <i>All heat exchangers</i> <i>with</i> $c = 0$	$NTU = -\frac{\ln [c \ln (1 - \varepsilon) + 1]}{c}$ $NTU = -\ln(1 - \varepsilon)$		

Analysis of Heat Exchanger: Effectiveness – NTU Method

- 1. A counter-flow double-pipe heat exchanger is to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m² \cdot K, determine the length of the heat exchanger required to achieve the desired heating.
- 2. Hot oil is to be cooled by water in a 1-shell-pass and 8-tube-passes heat exchanger. The tubes are thin-walled and are made of copper with an internal diameter of 1.4 cm. The length of each tube pass in the heat exchanger is 5 m, and the overall heat transfer coefficient is 310 W/m² · °C. Water flows through the tubes at a rate of 0.2 kg/s, and the oil through the shell at a rate of 0.3 kg/s. The water and the oil enter at temperatures of 20°C and 150°C, respectively. Determine the rate of heat transfer in the heat exchanger and the oilt temperatures of the water and the oil.
- 3. Hot oil ($Cp = 2200 \text{ J/kg} \cdot \text{K}$) is to be cooled by water ($Cp = 4180 \text{ J/kg} \cdot \text{K}$) in a 2-shell-pass and 12-tube-pass heat exchanger. The tubes are thin-walled and are made of copper with a diameter of 1.8 cm. The length of each tube pass in the heat exchanger is 3 m, and the overall heat transfer coefficient is 340 W/m² · °C. Water flows through the tubes at a total rate of 0.1 kg/s, and the oil through the shell at a rate of 0.2 kg/s. The water and the oil enter at temperatures 18°C and 160°C, respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil.