HEAT TRANSFER

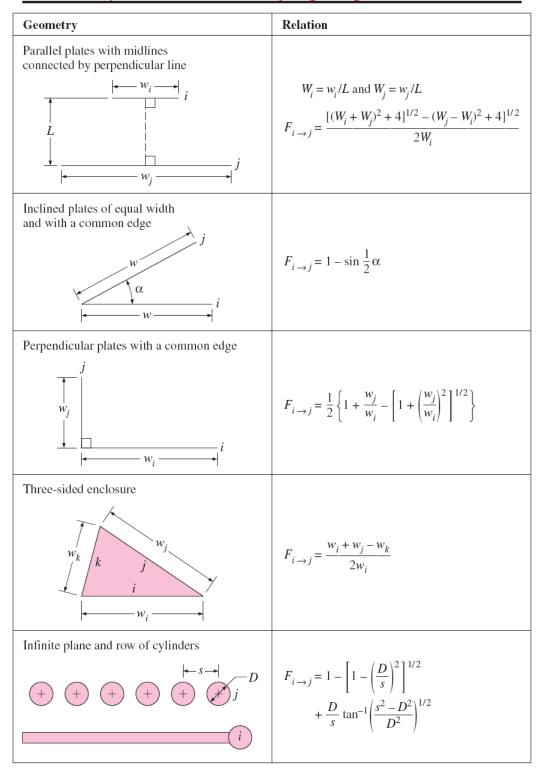
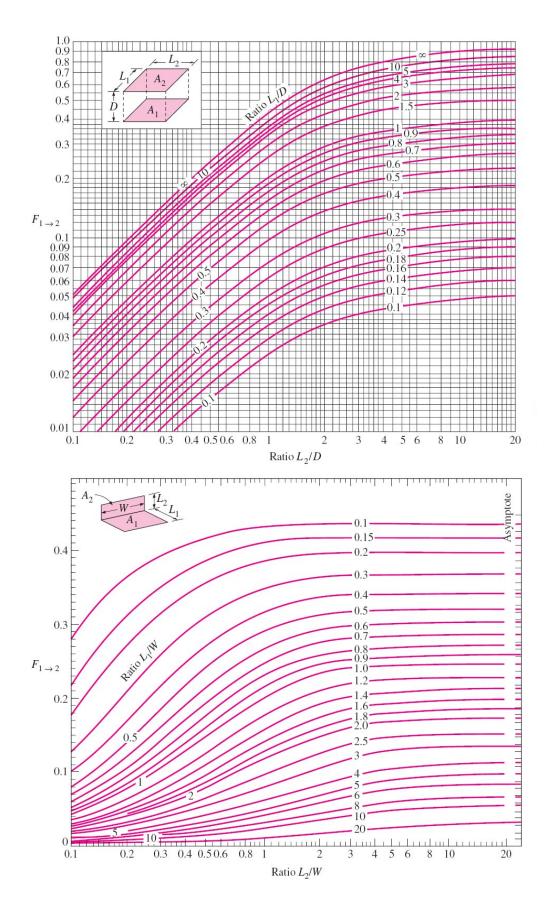
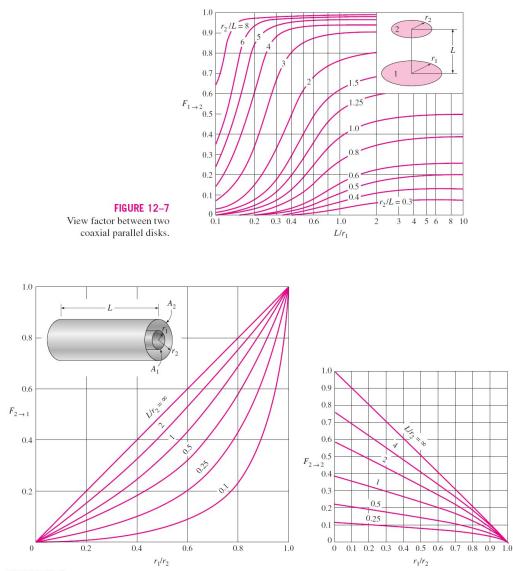

RADIATION – TABLES AND GRAPHS

TABLE 12-1

View factor expressions for some common geometries of finite size (3D)

Geometry	Relation
Aligned parallel rectangles	$\overline{X} = X/L$ and $\overline{Y} = Y/L$
	$\begin{split} F_{i \to j} &= \frac{2}{\pi \overline{X} \overline{Y}} \left\{ \ln \left[\frac{(1 + \overline{X}^2)(1 + \overline{Y}^2)}{1 + \overline{X}^2 + \overline{Y}^2} \right]^{1/2} \\ & + \overline{X} (1 + \overline{Y}^2)^{1/2} \tan^{-1} \frac{\overline{X}}{(1 + \overline{Y}^2)^{1/2}} \\ & + \overline{Y} (1 + \overline{X}^2)^{1/2} \tan^{-1} \frac{\overline{Y}}{(1 + \overline{X}^2)^{1/2}} \\ & - \overline{X} \tan^{-1} \overline{X} - \overline{Y} \tan^{-1} \overline{Y} \right\} \end{split}$
Coaxial parallel disks	$R_i = r_i/L$ and $R_i = r_i/L$
	$K_{i} = r_{i}/L \text{ and } K_{j} = r_{j}/L$ $S = 1 + \frac{1 + R_{j}^{2}}{R_{i}^{2}}$ $F_{i \to j} = \frac{1}{2} \left\{ S - \left[S^{2} - 4 \left(\frac{r_{j}}{r_{i}} \right)^{2} \right]^{1/2} \right\}$
Perpendicular rectangles with a common edge	H = Z/X and $W = Y/X$
$Z \xrightarrow{j}_{Y} X$	$\begin{split} F_{i \to j} &= \frac{1}{\pi W} \bigg(W \tan^{-1} \frac{1}{W} + H \tan^{-1} \frac{1}{H} \\ &- (H^2 + W^2)^{1/2} \tan^{-1} \frac{1}{(H^2 + W^2)^{1/2}} \\ &+ \frac{1}{4} \ln \bigg\{ \frac{(1 + W^2)(1 + H^2)}{1 + W^2 + H^2} \\ &\times \bigg[\frac{W^2(1 + W^2 + H^2)}{(1 + W^2)(W^2 + H^2)} \bigg]^{W^2} \\ &\times \bigg[\frac{H^2(1 + H^2 + W^2)}{(1 + H^2)(H^2 + W^2)} \bigg]^{H^2} \bigg\} \bigg) \end{split}$


TABLE 12-2


View factor expressions for some infinitely long (2D) geometries

View factors for geometries that are infinitely long in the direction perpendicular to the plane of the paper.

RADIATION

RADIATION

View factors for two concentric cylinders of finite length: (a) outer cylinder to inner cylinder; (b) outer cylinder to itself.