Tutorial

1. 0.5 kg of air is compressed reversibly and adiabatically from 80 kPa , $60^{\circ} \mathrm{C}$ to 0.4 MPa , and is then expanded at constant pressure to the original volume. Sketch these processes on the P-V and T-S planes. Compute the heat transfer and work transfer for the whole path.
Take $\mathbf{R}=\mathbf{0 . 2 8 7} \mathbf{k J} / \mathrm{kg} \cdot \mathrm{K}$ and $\gamma=1.4$
2. A mass of air is initially at $260^{\circ} \mathrm{C}$ and 700 kPa , and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 \mathrm{~m}^{3}$. A polytropic process with $\mathrm{n}=1.50$ is then carried out, followed by a constant temperature process which completes the cycle. All the processes are reversible. (a) Sketch these processes on the P-V and T-S planes. (b) Find the heat received and heat rejected in the cycle. (c) Find the efficiency of the cycle.
Take $\mathrm{C}_{\mathrm{v}}=\mathbf{0 . 7 1 8} \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $\gamma=1.4$
3. A mass of 0.25 kg of an ideal gas has a pressure of 300 kPa , a temperature of $80^{\circ} \mathrm{C}$, and a volume of $0.07 \mathrm{~m}^{3}$. The gas undergoes an irreversible adiabatic process to a final pressure of 300 kPa and final volume of $0.1 \mathrm{~m}^{3}$, during which the work done on the gas is 25 kJ . Evaluate C_{p} and C_{v} of the gas and the increase in entropy of the gas.
4. 3 kg of air at 150 kPa and 300 K is compressed reversibly and adiabatically until its pressure becomes 3 times the original pressure. It is expanded at constant pressure and finally cooled at constant volume to return to its original conditions. (a) Draw the P-V and T-S diagrams. (b) Calculate the rate of heat transfer. (c) Calculate the work done
Take $\chi=1.4, \mathrm{C}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
5. In a Carnot cycle, 2 kg of air at $2.75 \mathrm{MN} / \mathrm{m}^{2}$ and $400{ }^{\circ} \mathrm{C}$ is first expanded isothermally to 2 times of its initial volume and then further expanded reversibly and adiabatically to 4 times of its initial volume. Isothermal compression followed by reversible adiabatic compression returns the air to its original state. (a) Draw the $\mathrm{P}-\mathrm{V}$ diagram. (b) Calculate the final pressure, volume and temperature. (c) Calculate the work done per cycle
Take $\mathbf{R}=0.287 \mathrm{~kJ} / \mathrm{kg}$ K and $\gamma=1.4$
6. A quantity of air at a temperature and pressure of $20^{\circ} \mathrm{C}, 1$ bar, occupies a volume of $0.04 \mathrm{~m}^{3}$. An adiabatic and reversible compression to 5 bar is followed by heat addition at constant volume until the temperature is $300^{\circ} \mathrm{C}$. Finally, a polytropic process restores the fluid back to its original condition. (a) Sketch the cycle on a P-V diagram (b) Calculate the mass of the gas, (c) Find the polytropic index. (d) Calculate the net work done on or by the gas during the complete cycle.
Take $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\chi=1.4$
7. A cylinder contains 1 kg of air at a pressure and temperature of 1.5 bar and $20{ }^{\circ} \mathrm{C}$ respectively. The air is compressed according to the process law $\mathrm{PV}^{1.3}=$ Constant until the volume is halved. The gas is then heated isochorically until the pressure is 5.9 bar. Finally a polytropic expansion process restores the air to its original condition. The characteristic gas constant and specific heat capacity at constant pressure may be taken as $0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and $1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively. (a) Sketch the sequence of events on a PV diagram. (b) Calculate the work done during the compression process. (c) Calculate the polytropic index of the expansion process. (d) Calculate the change in entropy during the isochoric process.
