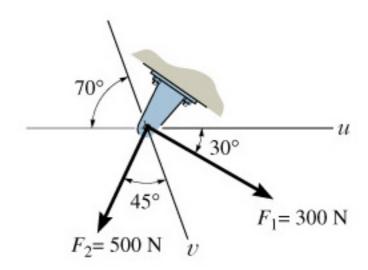
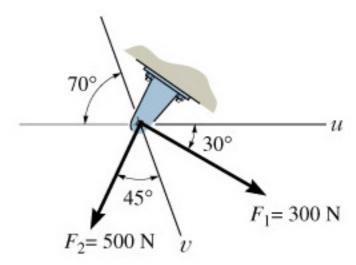
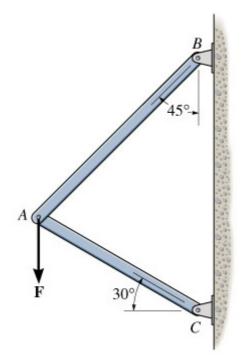
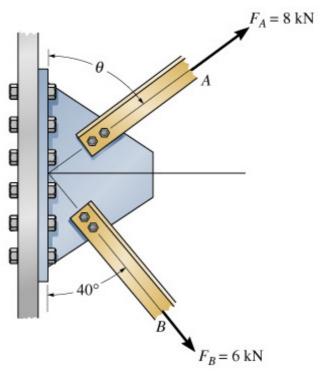

ENGINEERING MECHANICS FORCE VECTORS TUTORIAL

Part 1

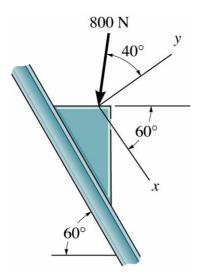

2-1. Determine the magnitude of the resultant force $F_R = F_1 + F_3$ and its direction, measured counterclockwise from the positive x axis.


2-3. Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ and its direction, measured counterclockwise from the positive x axis.

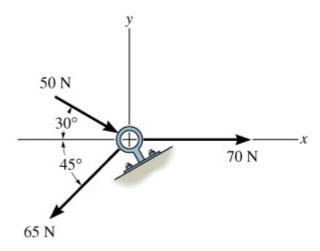

*2-4. Determine the magnitude of the resultant force $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2$ and its direction, measured clockwise from the positive u axis.


2-5. Resolve the force F_1 into components acting along the u and v axes and determine the magnitudes of the components.

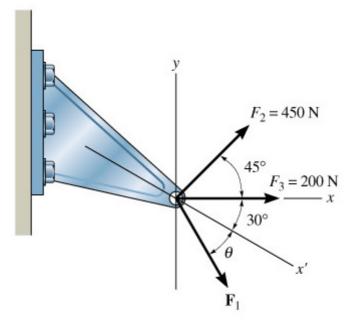
2-9. The vertical force \mathbf{F} acts downward at A on the two-membered frame. Determine the magnitudes of the two components of \mathbf{F} directed along the axes of AB and AC. Set F = 500 N.

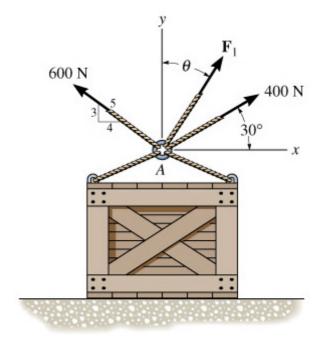


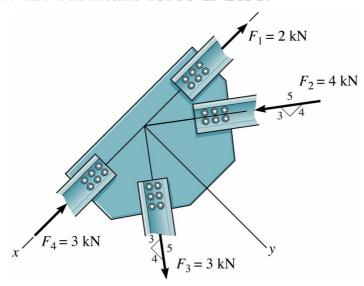
2-7. The plate is subjected to the two forces at A and B as shown. If $\theta = 60^{\circ}$, determine the magnitude of the resultant of these two forces and its direction measured from the horizontal.

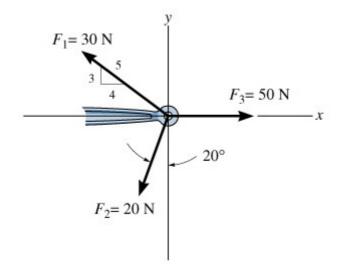


Part 2


2-31. Determine the x and y components of the 800-N force.


*2-32. Determine the magnitude of the resultant force and its direction, measured clockwise from the positive x axis.


2-35. Three forces act on the bracket. Determine the magnitude and direction θ of F_1 so that the resultant force is directed along the positive x' axis and has a magnitude of 1 kN.


2-37. Determine the magnitude and direction θ of \mathbf{F}_1 so that the resultant force is directed vertically upward and has a magnitude of 800 N.

2-47. Determine the x and y components of each force acting on the gusset plate of the bridge truss. Show that the resultant force is zero.

- 2-22. Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_1 + \mathbf{F}_2$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_3$.
- **2-23.** Determine the magnitude and direction of the resultant $\mathbf{F}_R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ of the three forces by first finding the resultant $\mathbf{F}' = \mathbf{F}_2 + \mathbf{F}_3$ and then forming $\mathbf{F}_R = \mathbf{F}' + \mathbf{F}_1$.

