ME 3117 Heat Transfer

Tutorial 1 - Introduction to Heat Transfer

(1) A heat rate of 3 kW is conducted through a section of an insulating material of cross-sectional area $10 \mathrm{~m}^{2}$ and thickness 2.5 cm . If the inner (hot) surface temperature is $415^{\circ} \mathrm{C}$ and the thermal conductivity of the material is $0.2 \mathrm{~W} / \mathrm{m} . \mathrm{K}$, what is the outer surface temperature? (Answer: $378{ }^{\circ} \mathrm{C}$)
(2) The inner and outer surface temperatures of a glass window 5 mm thick are 15 and 5C. What is the heat loss thorough a window that is 1 m and 3 m on a side. The thermal conductivity of glass is $1.4 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. (Answer: 8400 W)
(3) A freezer compartment consists of a cubical cavity that is 2 m on a side. Assume the bottom to be perfectly insulated. What is the minimum thickness of styrofoam insulation ($\mathrm{k}=0.030 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) that must be applies to the top and side walls to ensure a heat load of less than 500 W , when the inner and outer surface are $-10^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$? (Answer: $54 \mathbf{m m}$)
(4) An electric resistance heater is embedded in a long cylinder of diameter 30 mm . When water with a temperature of $25^{\circ} \mathrm{C}$ and velocity of $1 \mathrm{~m} / \mathrm{s}$ flows crosswise over the cylinder, the power per unit length required to maintain the surface at a uniform temperature of $90^{\circ} \mathrm{C}$ is $28 \mathrm{~kW} / \mathrm{m}$. When air, also at $25^{\circ} \mathrm{C}$, but velocity of $10 \mathrm{~m} / \mathrm{s}$ is flowing, the power per unit length required to maintain the same surface temperature is $400 \mathrm{~W} / \mathrm{m}$. Calculate and compare the convection coefficients for the flows of water and air. (Answer: $\mathbf{4 5 7 0} \mathbf{W} / \boldsymbol{m}^{2} . \boldsymbol{K}, \mathbf{6 5} \mathbf{W} / \boldsymbol{m}^{2}$. K)
(5) A square isothermal chip is of width $w=5 \mathrm{~mm}$ on a side and is mounted in a substrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant at $\mathrm{T}_{\infty}=15^{\circ} \mathrm{C}$. From reliability considerations, the chip temperature must not exceed $\mathrm{T}=85^{\circ} \mathrm{C}$. If the coolant is air and the corresponding coefficient is $\mathrm{h}=200 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$, what is the maximum allowable chip power? If the coolant is a dielectric liquid for which $\mathrm{h}=3000$ $\mathrm{W} / \mathrm{m} 2 . \mathrm{K}$, what is the maximum allowable power? (Answer: 0.35W, 5.25 W)
(6) A surface of area $0.5 \mathrm{~m}^{2}$, emissivity 0.8 , and temperature $150^{\circ} \mathrm{C}$ is place in a large, evacuated chamber whose walls are maintained at $25^{\circ} \mathrm{C}$. What is the rate at which radiation is emitted by the surface? What is the net rate at which radiation is exchanged between the surface and the chamber walls? (Answer: 726 W, 547 W)

ME 3117 Heat Transfer

Tutorial 2a-Conduction
(1) Assume steady-state, one-dimensional heat conduction through the axisymmetric shape shown on the right. Assume constant properties and no internal heat generation, sketch the temperature distribution on T-x coordinates.

(2) A hot water pipe with outside radius r_{1} has a temperature T_{1}. A thick insulation applied to reduce the heat loss has an outer radius r_{2} and temperature T_{2}. On T-r coordinates, sketch the temperature distribution in the insulation for onedimentional, steady-state heat transfer with constant properties.
(3) Assume steady-state, one-dimensional heat conduction through the symmetric shape shown. Assuming that there is no internal heat generation, derive an expression for the thermal conductivity $k(x)$ for these conditions: $A(x)=(1-x)$, $T(x)=300\left(1-2 x-x^{3}\right)$, and $q=6000 W$, where A is in square meters, T in Kelvin, and x in meters.

(4) One dimensional, steady-state conduction without heat generation occurs in the system shown. The thermal conductivity is $25 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ and the thickness L is 0.5 m . Determine the unknown quantities for each case in the accompanying table and sketch the temperature distribution, indicating the direction of the heat flux.

Case	T_{1}	$\mathrm{~T}_{2}$	$\mathrm{dT} / \mathrm{dx}$ $(\mathrm{K} / \mathrm{m})$	$\mathrm{q} "{ }_{\mathrm{x}}$ $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
1	400 K	300 K		
2	$100^{\circ} \mathrm{C}$		-250	
3	$80^{\circ} \mathrm{C}$		200	
4		$-5{ }^{\circ} \mathrm{C}$		
5	$30^{\circ} \mathrm{C}$			

(5) Consider a plane wall 100 mm thick and of thermal conductivity $100 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. Steady-state conditions are known to exist with $\mathrm{T} 1=400 \mathrm{~K}$ and $\mathrm{T} 2=600 \mathrm{~K}$. Determine the heat flux and the temperature gradient for the coordinate systems shown.

(6) A cylinder of radius r_{0}, length L, and thermal conductivity k is immersed in a fluid of convection coefficient h and unknown temperature T_{∞}. At a certain instant the temperature distribution in the cylinder is $\mathrm{T}(\mathrm{r})=\mathrm{a}+\mathrm{br}^{2}$, where a and b are constants. Obtain expressions for the heat transfer rate at the fluid temperature.

