
HEAT TRANSFER

RADIATION

Radiation differs from the other two heat transfer mechanism in that it 
does not require the presence of a material medium to take place.  Energy 
transfer through radiation is in fact fastest (speed of light) and it suffers 
no attenuation in a vacuum.  

Radiation transfer occurs in solids as well as liquids and gases.  In real 
situations, all three modes of heat transfer occur concurrently at varying 
degrees.

It is interesting to note that radiation heat transfer can occur between two 
bodies separated by a medium colder than both bodies.



Electromagnetic waves travel at the speed of light in a vacuum, which is 
C0 = 2.9979  108 m/s.  They are characterized by their frequency and 

wavelength.  These two properties are related by 
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speed of propagation of a wave in that medium.

Thermal Radiation

The electromagnetic spectrum covers a wide 
range of wavelengths, varying from 10 -10 m 
for cosmic rays to more that 1010 m for 
electrival power waves.  See figure 11–3.

The type of electromagnetic radiation that is 
pertinent to heat transfer is the thermal 
radiation.  Note how thermal radiation 
includes the entire visible and infrared 
radiation (IR) as well as a portion of the 
ultraviolet radiation (UV).  

Blackbody Radiation

A body at a temperature above absolute zero emits radiation in all 
directions over a wide range of wavelengths.  The amount of radiation 
energy emitted from a surface at a given wavelength depends on the:

1. material of the body
2. condition of its surface and,
3. the surface temperature



A blackbody is defined as a PERFECT EMITTER and PERFECT 
ABSORBER of radiation.  At a specified temperature and wavelength, no 
surface can emit more energy than a blackbody.

The radiation energy emitted by a blackbody per unit time and per unit 
surface area is given by
Stefan – Boltzman law: 4TEb    (W/m2)

Where = 5.67  10-8 W/m2K4 (Stefan – Boltzman constant)
Eb is called the blackbody emissive power.

The Stefan – Boltzman law gives the total blackbody emissive power Eb, 
which is the sum of the radiation emitted over all wavelengths.  
Sometimes we need to know the spectral blackbody emissive power, 
which is the amount of radiation energy emitted by a blackbody at an 
absolute temperature T power unit time, per unit surface area, and per unit 
wavelength about the wave length 
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This relation is called the Plank’s law.

THE VIEW FACTOR
Radiation heat transfer depends on the orientation of the surfaces relative 
to each other as well as their radiation properties and temperatures.

To account for the effect of orientation on radiation heat transfer between 
two surfaces, we define a parameter called the view factor.  It can also be 
referred to as shape factor, configuration factor, and angle factor.

The view factor from a surface i to a surface j is demoted by Fij or just Fij

is defines as

Fij = the fraction of the radiation leaving surface i that strikes surface j directly.

For the special case where j = i, we have
Fii = the fraction of radiation leaving surface i that strikes itself directly.

The value factor ranges from zero to one. Where for the extreme case Fij

= 0, the two surfaces do not have a direct view of each other, and thus 
radiation leaving surface i cannot strike surface j directly.  The other 
limiting case Fij = 1, the surface j completely surrounds surface i so that 
the entire radiation leaving surface i is intercepted by surface j.



View factors for several geometries are given in Tables 12 – 1 and 12 – 2 
in analytical form and in Figures 12 – 5 to 12 – 8 in graphical form.

1. The Reciprocity Relation
The reciprocity relation for view factors is given by
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2. The Summation Rule
The sum of the view factors from a surface i of an enclosure to all 
surfaces of the enclosure, including itself, must equal unity.  This is 
known as the summation rule and it is expressed as
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For example, applying the summation rule to surface 1 of a three surface 
enclosure gives
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Question 1
Determine the view factors associated with an enclosure formed by two 
spheres, shown in the figure below.



3. The Superposition Rule
Sometimes the view factor associated with a given geometry is not 
available in standard tables and charts.  For this the superposition rule is 
used where, it is expressed as the view factor from a surface i to a surface 
j is equal to the sum of the view factors from surface i to the parts of 
surface j.  Note the reverse of this is not true.

The radiation that leaves surface 1 and strikes the combined surfaces 2 
and 3 is equal to the sum of the radiation that strikes surfaces 2 and 3. 
Therefore, the view factor from surface 1 to the combined surfaces of 2 
and 3 is
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4. The Symmetry Rule

The determination of the view factors in a problem can be simplified 
further if the geometry involved possesses some sort of symmetry.

Therefore, the symmetry rule can be expressed as two (or more) surfaces 
that possess symmetry about a third surface will have identical view 
factors from that surface (Fig. 12–13).
Question 2
Determine the view factors from the base of the pyramid shown in Figure 
12–14 to each of its four side surfaces. The base of the pyramid is a 
square, and its side surfaces are isosceles triangles.



Question 3
Determine the view factor from any one side to any other side of the 
infinitely long triangular duct whose cross section is given in Figure 12–
15.

View Factors between Infinitely Long Surfaces:
The Crossed-Strings Method

To demonstrate this method, consider the geometry shown in Figure 12–
16, and let us try to find the view factor F12. The first step is to identify 
the endpoints of the surfaces (the points A, B, C, and D) and connect 
them to each other with tightly stretched strings (dashed lines). The view 
factor F12 can be expressed in terms of the lengths of these stretched 
strings, which are straight lines, as
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Note that L5 + L6 is the sum of the lengths of the crossed strings, and L3 +
L4 is the sum of the lengths of the uncrossed strings attached to the 
endpoints.  Therefore,
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The crossed-strings method is applicable even when the two surfaces 
considered share a common edge, as in a triangle. In such cases, the 
common edge can be treated as an imaginary string of zero length. The 
method can also be applied to surfaces that are partially blocked by other 
surfaces by allowing the strings to bend around the blocking surfaces.



Question 4
Two infinitely long parallel plates of widths a = 12 cm and b = 5 cm are 
located a distance c = 6 cm apart as shown in Figure 12–17.  Determine 
the view factor F12 from surface 1 to surface 2 by using the crossed-
strings method.

RADIATION HEAT TRANSFER
BLACK SURFACES



Question 5
Consider the 5-m  5-m  5-m cubical furnace shown in Figure 12–19, 
whose surfaces closely approximate black surfaces. The base, top, and 
side surfaces of the furnace are maintained at uniform temperatures of 
800 K, 1500 K, and 500 K, respectively. Determine (a) the net rate of 
radiation heat transfer between the base and the side surfaces, (b) the net 
rate of radiation heat transfer between the base and the top surface, and (c) 
the net radiation heat transfer from the base surface.


